a2 United States Patent
Chen et al.

US009047130B2

US 9,047,130 B2
Jun. 2, 2015

(10) Patent No.:
(45) Date of Patent:

(54) METHOD, SERVER AND SYSTEM FOR

CONVERGING DESKTOP APPLICATION

AND WEB APPLICATION

(75) Inventors: Ying Chen, Beijing (CN); Xing Fang,
Beijing (CN); Jie Qiu, Beijing (CN);
Qing Bo Wang, Beijing (CN); Meng Ye,
Beijing (CN)

(73) International Business Machines

Corporation, Armonk, NY (US)

Assignee:

otice: ubject to any disclaimer, the term of this
*) Noti Subj y disclai h f thi
patent is extended or adjusted under 35
U.S.C. 154(b) by 149 days.

2]

Appl. No.: 13/534,819

(22) Filed: Jun. 27,2012

(65) Prior Publication Data

US 2012/0297377 Al Now. 22, 2012

Related U.S. Application Data

Division of application No. 12/675,456, filed as
application No. PCT/EP2008/061313 on Aug. 28,
2008.

(62)

(30) Foreign Application Priority Data

Aug. 30,2007 (CN) 2007 1 0147118

(51) Int.CL
GOGF 15/16
GOGF 9/50

U.S. CL

CPC GO6F 9/5055 (2013.01)
Field of Classification Search

USPC 709/219
See application file for complete search history.

(2006.01)
(2006.01)

(52)
5 e

(56) References Cited
U.S. PATENT DOCUMENTS

6,598,067 Bl
6,950,991 B2

7/2003 Wydra et al.
9/2005 Bloomfield et al.

(Continued)

FOREIGN PATENT DOCUMENTS

EP
JP

1755041 A2
2005505051

2/2007
2/2005

(Continued)
OTHER PUBLICATIONS

Arno Puder, “Extending Desktop Applications to the Web,” sympo-
sium, 2004, 8-13, ACM International Conference Proceeding Series,
vol. 90; Trinity College Dublin, Las Vegas, NV.

(Continued)

Primary Examiner — Alicia Baturay
(74) Attorney, Agent, or Firm — Tutunjian & Bitetto, P.C.;
Preston J. Young

(57) ABSTRACT

A method, Web server and computer system are provided for
converging a desktop application and a Web application. The
method includes in response to a request from a client user for
using a target desktop application, starting a desktop appli-
cation initialization process on the Web server and determin-
ing an appropriate corresponding hosting server for the user;
preparing and provisioning desktop application environment
on the corresponding hosting server and starting the target
desktop application; transmitting the corresponding hosting
server’s address to the client so as to make desktop applica-
tion interaction between the client and the corresponding
hosting server; and in response to the completion of the desk-
top application interaction, stopping and exiting the target
desktop application on the corresponding hosting server. The
client user is provided with a unified Web console for access-
ing desktop applications and Web applications, and Web files
are shared between the desktop applications and the Web
applications.

13 Claims, 6 Drawing Sheets

Browser 100 Terminal ageat 110

Client side
Serverside
~
‘Web server Terminal service 310
200 Web lpzpll:nﬂcn I———" Web files 220 !'-4.__\“\
¢ | Replicated ien
Desktop application service File controller 250 n
3 Request [Comtroi o=
hendler 240 330
", \ Desktop application
1 30
mmm ¢ w J contreller 280
LY Hosting server 300
1 7 Ay
Resource pool 400
mage snd softwere

5ag0

US 9,047,130 B2

Page 2
(56) References Cited Jp 2010531488 9/2010
WO WO0215604 A 2/2002
U.S. PATENT DOCUMENTS WO WO02006107531 A 10/2006
7,324,648 B1* 1/2008 Deaveretal. 380/278
7,330,872 B2* 2/2008 Peartetal. 709/203 OTHER PUBLICATIONS
7,370,120 B2* 5/2008 Kirschetal. 709/246 : « : P
7373330 BL* 52008 Klebe 708751 Huajun Zhang et al., “Converting an ArcGIS Desktop Application to
7.400,322 B1* 7/2008 Urbach 345/419 ArcGIS Server Web Application,” 2006 ESRI Federal User Confer-
7412,625 B2* 82008 Shankaretal. . - 714/38.14 ence, Washington, DC.
7,577,722 B1* 82009 Khandekar et al. .. 709/220 . . . L . .
7,620,899 B2* 11/2009 Abdo et al. .. 715/740 Ron Miller, “Get Rich Online: Rich internet Applications Pay Big
7,827,590 B2* 11/2010 Hopen et al .. 726/1 Dividens,” EContent, Apr. 1, 2006.
8,176,482 B1* 52012 Felix 717/168 Stefan Paal et al., “A Cross-Platform Application Environment for
8,549,149 B2* 10/2013 Sundarrajan et al. .. 709/227 di X ine” book 1 /
2003/0187983 Al* 10/2003 Rajic etal. 709225~ Nomadic Deskiop Computing,” book, 2004, 185-200, vol. 3263
2004/0205101 Al 10/2004 Radhakrishnan 2004, Springer Berlin / Heidelberg.
2004/0221065 Al 11/2004 Banerjee et al. Patent Cooperation Treaty. “International Search Report and Written
2006/0132489 Al 6/2006 Blaho Opini £ the Int tional S hine Authority” I don Feb. 23
2010/0313199 Al* 12/2010 Chenetal.cc..c......... 717177 pinion of the International Searching Authority” Issued on 'eb. 23,
2009 for International Application No. PCT/EP2008/061313. (8
FOREIGN PATENT DOCUMENTS Pages).
Jp 2005517254 6/2005 * cited by examiner

U.S. Patent Jun. 2, 2015 Sheet 1 of 6 US 9,047,130 B2

]]

; E

’/__—T——‘. Web server :

]

Browser 1 H E

: | Hosting server 1 E

» (]

: !

Browser 2 i Hosting server 2 :,

[4 e

9 ’

Browser 3 : Hosting scrver J :
Clicnt side Server side

Terminal agent ares

‘Web page layout

Fig. 3

US 9,047,130 B2

Sheet 2 of 6

Jun. 2, 2015

U.S. Patent

00 °81d
00s Aionsodas b
asemyjos pue dem B @ B _D
/ \. ./Sv jood 22anosay
\ / \
00§ JoA195 3uysoy | W'/ X
08T J3110.3u00 oLz 097
ovE < ymomloydoq 153eurm 3310059y JaSeusw nOISEIS
popespidde dopiseq] \
0te
jualds jonuo)y ¢ opz 191 pURYy
1sanboy 057
oze 0SZ 105800 3 a0jaies vopeandds dopisag
wEpydy I) - ;
....... *_
L [| T oLt 00z
*--a 02T DI M uoyesfidde gomy
0] € d3A19S JeTmLId], ; JOAIIS GO\
e
IPIS JIAIG
...................................... o N
017 U2 [BUIMDL, 00T Josmoxg

U.S. Patent Jun. 2, 2015 Sheet 3 of 6 US 9,047,130 B2

Browser 100 Terminal agent 110

RV

Web application 210 Desktop application
340

® /®

Desktop apélleatton
service 230

Hosting server 300

‘Web server 200

500

Desktop spplication initialization request ﬂ

S510

Is there an existing hosting
server for this session?

Resource allocatioh and provisioning / $520
‘ §530
Replicate session flle to hosting server
l 5540
Start desktop application and terminal service
l / SSS0

Return hosting server’s address to client

:

Fig. 5

U.S. Patent Jun. 2, 2015 Sheet 4 of 6

Desktop application exit request

US 9,047,130 B2

Is there an hosting server No
running in this session?
$620
Stop desktop application and terminal service
+ S630
Replicate modified or updated files to original locations
S640 No
Save image?
Yes
y / S650

Backup image to image and software repository

» S660

Release hosting server to resource pool

U.S. Patent Jun. 2, 2015 Sheet 5 of 6 US 9,047,130 B2

700 (S520)

S510

§710

Does aser want to restore
image and is there an

exlsting server image for

specified image ID?

Yes

§715 N Allocate a
hosting
server
Is there a free hosting server §720 Yes
with matched OS and
desktop application? Restore
server
image to
this server
No Is there a free hosting server §730 /
that can be installed with S725

requested desktop application?

Return

error to

client and

:xit !
esktop

application If required, install OS

interaction J

 S750

Tustall desktop application $760

Install terminal service and s ST10
control agent (if not installed)

”

] e . | 5780
Set status of hosting server as ~ in use
¥ Vg S790
Return hosting server’s IP address to request
handler

!

§530 Fig. 7

US 9,047,130 B2

Sheet 6 of 6

Jun. 2, 2015

U.S. Patent

uoysaydde
dopysap sso00y |T—yme

3

uopedyidde dopysep UmS

B qom-dognseq Juombuo]

RIS G 98- -0
R KX

uonsdyjdde doyysap apiaosd

N

1[@..7..!15@:@@34 5

~ Wises A vex unms
501 idip3, sbwyeed o3 yeenbus et Supndarg
= ORI U Dupvdny

Bupojsparg

sziiiaﬁ

nonedjdde doyysap 10J J34135 3500

mmpstio M -dojyseq Juombuo]

bay T'lm_.o%|§eo@ ‘@
2

o.a!n!llai:la

195M04q G\ Ul uonedfidde dopysop P3PS n_ - ,u:a%

=
&g Auonpoud BATINC)
Lyappnpayy

TN Y oA WITALS TR
30 esdpR.s

wewdojareq
suoppoeles sbeovg

syt -doyse(yuombuoy
I e)G 6 £ O D

sgiagl.&

US 9,047,130 B2

1

METHOD, SERVER AND SYSTEM FOR
CONVERGING DESKTOP APPLICATION
AND WEB APPLICATION

RELATED APPLICATION INFORMATION

This application is a Divisional application of co-pending
U.S. patent application Ser. No. 12/675,456 filed on Aug. 20,
2010, incorporated herein by reference in its entirety.

TECHNICAL FIELD

The present invention generally relates to the field of com-
puter technology, and more particularly to a method, appara-
tus and system for converging a desktop application and a
Web application.

BACKGROUND

In the present information technology (IT) field, Web tech-
nology is widely applied because of its simplification, light-
weight and based on open standards. More and more software
vendors are dedicated to developing their applications based
on Web technology. Compared with traditional desktop appli-
cations, Web applications have plenty of advantages, for
example, Web applications do not require software installa-
tion and maintenance, which makes them easy to be distrib-
uted.

However, Web applications also have their limitations. A
major problem thereof is that their HTML based user inter-
face can’t support advanced user interaction. Due to this
problem, desktop applications still need to be used in many
cases. In some cases, an end user needs to switch between a
Web application and a desktop application to finish his work.
For example, when a user is editing his BLOG, if he wants to
add some photos or pictures, then firstly, he needs to find
some required photos or pictures, and then he possibly needs
to edit them. To do so, he must install some photo or picture
editing software (i.e., a desktop application). After that, he
needs to upload the edited photos or pictures to a Web appli-
cation. However, such user experience is not so good because
of'some of the following reasons: (1) the integrity of the user’s
experience is broken; (2) the user must switch between dif-
ferent consoles; (3) Web application data and desktop appli-
cation data can’t be shared; (4) the user must install the
required desktop application and maintain it periodically.

To enhance Web application capability, some technologies
such as Java script, AJAX, ActiveX and Applet are widely
used. For a Java script/AJAX approach, its idea is to write a
Web application with the help of Java script, which is a script
language providing interactive programming features. How-
ever, the use of Java script also has great limitations. For
example, the first limitation is that Java script is executed by
a translator and has poor performance; the second limitation
is that some programming logic can’t be implemented using
Java script. For an ActiveX/Applet approach, it is not adopted
very widely because of its poor compatibility. On the other
hand, the user needs to download different plug-ins for dif-
ferent applications and the file size of some plug-ins may be
so0 big that it needs a lot of time to be downloaded.

In view of the above situations, a technology is thus
urgently required that can overcome defects in the prior art
and converge a Web application and a desktop application so
as to use the desktop application to process files of the Web
application.

SUMMARY OF THE INVENTION

A brief summary on the present invention is given herein-
after to provide basic understanding of some aspects of the

10

15

20

25

30

35

40

45

50

55

60

65

2

present invention. However, it should be understood that this
summary is not an exhaustive description of the present
invention. Moreover, it is not intended to determine critical or
important parts of the present invention and to limit the scope
of the present invention either. The summary is only used to
give some concepts in a simplified form, which is taken as
prolegomenon of the following more detailed description
discussed later.

To resolve the above problems existing in the prior art, in a
preferred aspect of the present invention there is provided a
method for converging a desktop application and a Web appli-
cation.

In accordance with another aspect of the present invention
there is provided a Web server that facilitates convergence of
a desktop application and a Web application, as well as a
corresponding computer system.

In accordance with another aspect of the present invention
there is provided a computer readable storage medium on
which computer program codes for realizing the above
method are stored or encoded, as well as a corresponding
computer program product.

Viewed from a first aspect, the present invention provides a
method for converging a desktop application and a Web appli-
cation, the Web application being included in a Web server,
the method comprising steps of: in response to a request from
a client user for using a target desktop application, starting a
desktop application initialization process on the Web server
and determining an appropriate corresponding hosting server
for the user; preparing and provisioning desktop application
environment on the corresponding hosting server and starting
the target desktop application; transmitting the corresponding
hosting server’s address to the client so as to make desktop
application interaction between the client and the correspond-
ing hosting server; and in response to the completion of the
desktop application interaction, stopping and exiting the tar-
get desktop application on the corresponding hosting server.

Viewed from a second aspect, the present invention pro-
vides a Web server for converging a desktop application and
a Web application, the Web server being capable of commu-
nicating with a client and one or more hosting servers and
including a Web application and a desktop application ser-
vice, wherein, the Web application generates a desktop appli-
cation initialization request in response to a request from a
user of the client for using a target desktop application, and
generates a desktop application exit request in response to the
completion of desktop application interaction; in response to
the desktop application initialization request, the desktop
application service starts a desktop application initializing
process on the Web server, determines an appropriate corre-
sponding hosting server for the user, prepares and provisions
desktop application environment on it so that the correspond-
ing hosting server could start the target desktop application
and transmit the corresponding hosting server’s address to the
client, thereby making the desktop application interaction
between the client and the corresponding hosting server; and
in response to the desktop application exit request, the desk-
top application service stops and exits the target desktop
application on the corresponding hosting server.

Viewed from a third aspect, the present invention provides
a computer system for converging a desktop application and
a Web application, comprising: a client with a Web browser
installed thereon; one or more hosting servers each including
a terminal service for capturing the hosting server’s user
interface and a control agent for starting a desktop application
onthe hosting server; a Web server capable of communicating
with the client and the one or more hosting servers and includ-
ing a Web application and a desktop application service,

US 9,047,130 B2

3

wherein, the Web application generates a desktop application
initialization request in response to a request for using a target
desktop application from a user of the client through the Web
browser, and generates a desktop application exit request in
response to a request from the user of the client for ending the
desktop application, in response to the desktop application
initialization request, the desktop application service starts a
desktop application initializing process, determines an appro-
priate corresponding hosting server for the user, and prepares
and provisions desktop application environment on it so that
the control agent could start the target desktop application on
the corresponding hosting server and the Web application
could transmit the corresponding hosting server’s address to
the client, the browser plug-in is started at the client side, so as
to intercept user input at the client side and provide it to the
terminal service on the corresponding hosting server, and
display the corresponding hosting server’s user interface in
the Web browser, and via the browser plug-in and the terminal
service on the corresponding hosting server, the desktop
application interaction is made between the client end and the
corresponding hosting server, and in response to the desktop
application exit request, the desktop application service stops
and exits the target desktop application on the corresponding
hosting server.

Viewed from a fourth aspect, the present invention pro-
vides a computer program product loadable into the internal
memory of a digital computer, comprising software code
portions for performing, when said product is run on a com-
puter, to carry out the invention as describe above.

In accordance with other aspects of the present invention, a
corresponding computer readable storage medium and com-
puter program product are also provided.

In those solutions according to the present invention, by
embedding a remote desktop application’s user interface (UI)
into a Web application (e.g., Web browser), it is possible for
an end user to use the remote desktop application to process
files of the Web application. This means that the user could
use the desktop application to edit Web files within a Web
page. When a user at the client side is using a certain Web
application, he may send to a Web server a request for initial-
izing a certain desktop application. After the Web server
receives this request, firstly, it finds an existing server which
has been installed with the requested desktop application.
Such a server that has already installed with or is capable of
being installed with the requested desktop application to pro-
vide this desktop application is referred to as a hosting server
hereinafter. If such a server can’t be found, then the Web
server will allocate a new hosting server for the user and
provide it with the required operation system and the
requested desktop application. After the hosting server is
ready, the Web server will replicate Web files into the hosting
server and start the desktop application with these files. When
the desktop application is started, the Web server will return
the address of the hosting server (for example, IP address and
port number) to the client. At the same time, a terminal plug-
in, which can be acquired from the Web server, is downloaded
or launched within the same Web browser at the client side.
This plug-in immediately connects to the hosting server by
using the above terminal addresses and makes the remote
desktop application’s user interface to be shown in the Web
browser at the client side. Then the user could interact with
the remote desktop application through the terminal plug-in.
Inthe end, when the user closes the desktop application, those
Web files modified and changed during the desktop applica-
tion interaction will be replicated to the Web server. In this
way, Web applications and desktop applications can be con-
verged.

20

35

40

45

50

55

60

65

4

The present invention has several advantages. The first
advantage is that it provides a unified Web console for end
users to access desktop applications and Web applications.
Desktop applications could be regarded as a part of Web
applications, and they are hardware independent and opera-
tion system independent. A Single Sign-On (SSO) feature is
ready under the control of Web applications. Moreover, Web
files can be shared between desktop applications and Web
applications, and all changes made by desktop applications
can be quickly reflected on Web applications.

The second advantage is that management effort for desk-
top applications can be simplified. For end users, there is no
need to download, install, update and maintain desktop appli-
cations at the client side. Moreover, in most cases, some
desktop applications may be rarely used by users. With these
solutions of the present invention, users do not need to install
desktop applications locally. Binary codes of desktop appli-
cations are executed on the hosting server, thus it is easier to
control software license issues. For software vendors, there is
no need to rewrite corresponding desktop applications using
Web programming models. Furthermore, traditional desktop
applications can be integrated with Web applications, and the
development cycle of desktop applications can also be
reduced. For system administrators, it is easier to manage
these desktop applications and the applications could be
maintained centrally. On the other hand, all files and data can
be stored at the Web server, thus data loss risk is reduced to
minimal and data backup is also easier. In the mean time,
more powerful resource (e.g., hosting server) could be used to
provide better performance for users.

The third advantage is that virtualization and automation
technology can be utilized to reduce cost in those solutions
according to the present invention. Several existing technolo-
gies, such as VMWare, Xen, and IBM LPAR etc., support
server virtualization. These technologies could simulate a
physical server as several logical servers or virtual servers.
These virtual servers may share resource of the same physical
server, which could improve resource utilization and sharing.
Furthermore, desktop applications could be deployed on
these virtual servers, thereby saving hosting cost for service
providers. On the other hand, automation technology may be
used to provision operation systems (OSs) and desktop appli-
cations, thereby facilitating to save deployment time and
reduce human error.

These and other advantages of the present invention will
become more apparent from the detailed description of pre-
ferred embodiments of the invention below given in conjunc-
tion with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

This invention can be better understood by referring to the
description below given in conjunction with the accompany-
ing drawings, in which the same or similar reference signs are
used to indicate the same or similar components throughout
the accompanying drawings. These drawings together with
the following detailed description form a part of the present
specification, and serve to further illustrate preferred embodi-
ments of the present invention and explain principles and
advantages thereof, in which:

FIG. 1 shows a block diagram of an exemplary computer
system to which a preferred embodiment of the present inven-
tion can be applied;

FIG. 2 further shows various components included in the
computer system as shown in FIG. 1 in detail;

FIG. 3 shows an exemplary Web application page layout in
which a desktop application’s user interface is integrated;

US 9,047,130 B2

5

FIG. 4 simply shows user interaction and session replica-
tion processes of the computer system as shown in FIG. 2
during the desktop application initialization;

FIG. 5 shows a flowchart of a process 500 executed during
the desktop application initialization in accordance with a
preferred embodiment of the present invention;

FIG. 6 shows a flowchart of a process 600 executed during
the desktop application exit in accordance with a preferred
embodiment of the present invention;

FIG. 7 shows a flowchart illustrating in detail a specific
process 700 of a resource allocation and provisioning step
S520 in the process 500 as shown in FIG. 5 in accordance with
a preferred embodiment of the present invention; and

FIG. 8 shows exemplary screen snapshot images of a client
computer when utilizing the method and system according to
a preferred embodiment of the present invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

Exemplary embodiments of the present invention will be
described in conjunction with the accompanying drawings
hereinafter. For the sake of clarity and conciseness, not all the
features of actual implementations are described in the speci-
fication. However, it should be appreciated that, during devel-
oping any of such actual implementations, numerous imple-
mentation-specific decisions must be made to achieve the
developer’s specific goals, for example, compliance with sys-
tem-related and business-related constraints which will vary
from one implementation to another. Moreover, it should also
be appreciated that, such a development effort might be very
complex and time-consuming, but may nevertheless be a
routine task for those skilled in the art having the benefit of
this disclosure.

It still needs to be explained herein that the accompanying
drawings only show device structures and/or processing steps
that are closely related to the solution of the present invention
and other details that have little relation with the present
invention are omitted, so that the present invention will not be
obscured by unnecessary details.

Reference is made to the accompanying drawings herein-
after to give a detailed description of preferred embodiments
in accordance with the present invention.

First, referring to FIG. 1, a block diagram illustrates a
computer system to which a preferred embodiment of the
present invention can be applied. As shown in FIG. 1, in
accordance with the present invention, only Web browsers are
required at the client side; one Web server and three hosting
servers are shown at the server side. Although only three
hosting servers are shown in this figure, any number of host-
ing servers can be included. Just as mentioned above, hosting
servers refer to those servers for providing related desktop
applications.

A Web application and related supporting components are
deployed in the Web server. In the hosting server, one or more
desktop applications possibly requested by the client have
been or can be deployed. For general Web application inter-
action, a client browser communicates with the Web applica-
tion deployed on the Web server. When certain desktop appli-
cation interaction is needed, a corresponding hosting server
will be allocated for the user by the Web server. Then, the
client communicates with the desktop application deployed
on the hosting server. After desktop application interaction
finishes, the hosting server is released. After that, the client
continues to interact with the Web server. This above proce-
dure might be repeated for many times, depending on client’s
needs on desktop applications.

20

40

45

55

6

Next referring to FIG. 2, a diagram illustrates in detail
components included in the computer system as shown in
FIG. 1. For the sake of simplicity, only one hosting server 300
is shown in FIG. 2. However, those skilled in the art would
understand that this computer system may still include one or
more other components not shown and usually have more
than one hosting server in practice.

As shown in FIG. 2, at the client side, a browser plug-in is
installed in the browser 100. This plug-in is referred to as
terminal agent 110 hereinafter (Details of this plug-in will be
described hereinafter in conjunction with a processing flow-
chart of the method). It has two major functions: intercepting
user input and sending it to a corresponding hosting server
(e.g., a hosting server 300 in FIG. 2); and displaying the user
interface of the corresponding hosting server in the browser
100. Several existing technologies, such as VNC offered by
RealNVC (a kind of remote control software) XWindow
manager for Linux/UNIX and the like, could be used to
implement this plug-in. In addition to these technologies, a
Java applet approach could be used to realize the terminal
agent 110 (Java is a registered trademark of Sun Microsys-
tems in the U.S and other countries.

For example, in case of using the Java applet approach,
when the applet is initialized, it will connect to a correspond-
ing terminal service 310 running on the hosting server 300, as
shown in FIG. 2. Then, a TCP connection could be estab-
lished. This applet may capture the user’s keyboard and
mouse events and send them to the corresponding hosting
server 300. After the terminal service 310 receives these
events, it will generate such events on the hosting server 300
to simulate client interaction. At the same time, the terminal
service 310 captures the user interface of the hosting server
300 (i.e., screen) and sends a screen image back to the client.
When the terminal agent 110 receives the screen image, it will
draw the image within the applet. For security consideration,
data transferred between the client and server could be
encrypted in practical applications. Furthermore, for perfor-
mance consideration, image cache could be enabled at the
client side while data being transferred could be compressed.

FIG. 3 shows an exemplary Web application page layout in
which a desktop application’s user interface is integrated.
After the user at the client side enables a remote desktop
application through his/her Web browser, the Web page lay-
out as shown in FIG. 3 will appear in the Web browser 100 at
the client side by means of the terminal agent 110. That is, the
remote desktop application’s user interface (UI) will appear
in a rectangle area in a Web page on the Web browser at the
client side. The rectangle area is controlled by the terminal
agent 110 shown in FIG. 2.

Turn back to FIG. 2 again. As shown in FIG. 2, on the Web
server 200 at the server side, a Web application 210 needs to
call a desktop application service 230 to handle usage
requests for desktop applications. When the client requests to
use a certain desktop application, the Web application 210
generates a desktop application initialization request for ask-
ing the desktop application service 230 to make preparation.
As shown in FIG. 2, the desktop application service 230
mainly comprises the following components: a request han-
dler 240, a file controller 250, a session manager 260, a
resource manager 270 and a deployment controller 280.

Besides these components, as shown in FIG. 2, at the server
side, there may also include a resource pool 400 containing
one or more servers, which is used to provide the required
hosting server(s), for example, the hosting server 300 (for the
sake of explanation, only one hosting server 300 is shown in
FIG. 2, but in fact any number of hosting servers can be
included); and an image and software repository 500 for

US 9,047,130 B2

7

storing server images and installation software for a plurality
of desktop applications that might be requested by the client.

The request handler 240 provides several interfaces to the
Web application 210, which are as follows:

(1) Desktop Application Initialization

In the desktop application initialization request sent from
the Web application 210 to the desktop application service
230, the client needs to send version information of the desk-
top application and a list of files which need to be opened by
the desktop application. In addition, a file synchronization
option and a restore options could be included in the initial-
ization request. Furthermore, Web session information could
also be included so that the request handler 240 could reuse
the same hosting server for the same user. For example, the
following is an exemplary XML initialization request:

<initializereq>
<application name=“Photoshop” version="7.0" vendor="Adobe”>
<file url="/images/header.jpg” location="crl.ibm.com:/shared/
myproject/header.jpg” synchronization__interval=10s refresh=true/>
<file url="/images/footer.jpg”
location="crl.ibm.com:/shared/myproject/
footer.jpg” synchronization__interval=20s refresh=false/>
</application>
<application name="“Word” version="2003" vendor="“Microsoft”’>
<file url="/docs/news.doc” location="crl.ibm.com:/shared/doc/
news.doc”/>
</application>
<session id="DFAWER214ASDFD”/>
<restore imageid=23>true</restore>
</initializereq>

From the initialization response of the desktop application
service 230 to the above initialization request, the client could
know whether this request is handled successfully or not. The
address of the hosting server can also be known so that the
client browser could know how to connect to the hosting
server. For example, the following is an exemplary XML
initialization response:

<initializeresp>
<result value="success” appid=“1"/>
<address value=“myhost:myport”/>
</initializeresp>

(2) Desktop Application Exit

After the user has finished using the desktop application,
the Web application 210 may request to exit the desktop
application so that related resource could be recycled. The
Web session information could be included in the exiting
request so that the request handler 240 can know which host-
ing server needs to be recycled. Moreover, a backup option
could also be included in the exiting request so that the host-
ing server environment could be backed up as necessary. For
example, the following is an exemplary XML exiting request:

<exitreq™>

session id="DFAWER214ASDFD” />
<backup>true</backup>
</exitreq>

From the response to the exiting request, the Web applica-
tion 210 could know the result of the operation. For example,
the following is an exemplary XML exiting response:

10

15

20

25

30

40

45

50

55

60

<exitresp>

<result value="“success”/>
<image id=23/>
</exitresp>

(3) Query

The query function enables the Web application 210 to
check the status of the current environment. For example, the
following status could be checked:

Available applications;

Running status of the hosting server for a session.

In the Web application, when there is a need to utilize a
desktop application, it could firstly query available desktop
applications and then list them, for example, in the form of a
list.

For each desktop application, the following attributes
could be displayed for the user’s selection: application name,
version, vendor and operation system (OS). The above infor-
mation can be obtained from the resource manager 270, the
detailed description of which will be given below. In the Web
application 210, the list of available desktop applications
could be modified according to the user’s authority and
demand.

When the user requests to use a certain desktop application
through the Web browser 100 and submits the form, the Web
application 210 will generate a desktop application initializa-
tion request and send it to the request handler 240. The request
handler 240 will firstly check the session manager 260 to
determine whether there is already a running hosting server
for this current session or not. If such a hosting server is
determined as not present, then it will request the resource
manager 270 to allocate one hosting server from the resource
pool 400, for example, hosting server 300, to run the
requested desktop application. After the resource allocation is
done, the request handler 240 will request the deployment
controller 280 to prepare and provide hosting server environ-
ment and acquire the hosting server’s address, such as IP
address and port number. Then, the session manager 260
saves the hosting server address information and user session
information. Atlast, the request handler 240 sends the hosting
server address back to the Web application 210. The Web
application 210 sends to the user browser side a page which
includes plug-in (i.e., the terminal agent 110) information and
the hosting server address. After the user browser 100
receives the response, it will start the plug-in, i.e., terminal
agent 110. Here, it needs to be noted that the plug-in is only
required to be downloaded from the Web server when the
client accesses the remote desktop application via the browser
for the first time; and as the case may be, the plug-in could be
stored on the Web server or anywhere else on the network
accessible by the Web server (For the sake of simplicity, it
isn’t shown in FIG. 2). This procedure described above is
shown in FIG. 4.

FIG. 4 simply shows user interaction and session replica-
tion processes of the computer system as shown in FIG. 2
during the desktop application initialization. Just as described
above, ‘1’ shows Web application interaction using session
tokens; 2’ shows that the client requests for a desktop appli-
cation in the Web application; ‘3’ shows that the Web appli-
cation 210 sends a desktop application initialization request
to the desktop application service 230; ‘4’ shows preparing
desktop application environment, that is, a desktop applica-
tion initialization process, details of which will be described
thereinafter with reference to the flowchart as shown in FIG.
5; *5” shows that the desktop application service 230 responds
to the Web application 210; ‘6” shows that the Web applica-

US 9,047,130 B2

9

tion 210 responds to the browser; and ‘7’ shows that the
browser 100 starts the terminal agent 110 and connects to a
desktop application 340.

After finishing the desktop application interaction as
described above, the user may, for example, send a request to
the Web application 210, which then generates a desktop
application exit request and send it to the request handler 240
of the desktop application service 230. If the user wants to
save his/her hosting server currently allocated for future use,
the deployment controller 280 may store the entire server
image of'this hosting server to the image and software reposi-
tory 500. After that, the request handler 240 calls the deploy-
ment controller 280 to clean up the target hosting server, for
example, clear some files generated during the user’s usage so
that they would not be seen by other users later, and asks the
resource manager 270 to release the hosting server. This
above process will be described in detail hereinafter with
reference to the flowchart shown in FIG. 6.

Turnback to FIG. 2 again. The session manager 260 is used
to maintain and save user session. After receiving the desktop
application initialization request, the request handler 240
checks the session manager 260 to determine whether or not
there is already a hosting server running for this session. If
such a server is not present, the session manager 260 saves
this session ID and allocated hosting server ID. If such a
server is already present, the request handler 240 will return
the hosting server’s IP address and port number.

In the resource pool 400, there may be one or more servers
of different types, such as Intel/AMD PC server and UNIX
server, etc. These servers might have already installed an
operation system and desktop applications, but it is also pos-
sible that no operation system and desktop application is
installed therein. In addition to physical servers, the resource
pool 400 might also include one or more virtual servers.

The resource manager 270 maintains the resource pool 400
and handles resource allocation requests and resource release
requests. The resource manager 270 keeps track of all servers
in the resource pool 400 and saves their detailed information.
Such information may include the servers” hardware type and
configuration, IP address, OS type, name and version infor-
mation of desktop applications installed or stored in the
server, etc. Based on this information, the resource manger
270 could allocate or determine the best suitable server with
respect to a resource allocation request. When a certain
resource allocation request is received, the resource manger
270 may find a matched server in the resource pool 400 based
on the desktop application and its required OS name. If a
matched server (i.e. hosting server) is found, then the
matched server will be marked as “in use”, and its IP address
and port number will be returned. If no matched server is
found, then the resource manger 270 will select a suitable
hosting server from the resource pool 400 for provisioning
and mark it as “in use”. This above process will be described
in detail with reference to the flowchart shown in FIG. 7
hereinafter. When a resource release request is received, the
resource manager 270 will release the server in use and mark
it as “free”. If the server in use is a virtual server rather than a
real physical server, the resource manager 270 will destroy
this server and release the allocated resource.

In other words, both physical servers and virtual servers
could be managed by the resource manager 270. For a physi-
cal server, it is managed by the resource manager 270 at a box
level, which means only one physical server could be allo-
cated for a single user each time. For a virtual server, the host
platform on which it runs could be shared by different users.
Each user may only use a virtual server, which only consumes

35

40

45

60

10

part of physical server resource. Virtual servers could be
prepared in the resource pool 400 prior to allocation or pro-
vided on demand.

The deployment controller 280 is an automation engine for
auto-installation. It could install a remote system automati-
cally. The installation work includes OS installation, applica-
tion program installation, software configuration, system
updating, and server backup etc. Installation software is gen-
erally stored in the image and software repository 500. The
deployment controller 280 could be implemented by several
existing products, such as IBM’s Director for Windows/
Linux provisioning or IBM’s NIM for AIX provisioning.

The major function of the file controller 250 is synchroniz-
ing files between the Web server 200 and the hosting server
300. The file controller 250 communicates with a control
agent 330 in the hosting server 300 to finish this task. During
the desktop application initialization, it replicates those files
specified in the desktop application initialization request to
the home directory of hosting server 300. During exiting the
desktop application, it replicates all files modified or updated
during the desktop application interaction from the hosting
server 300 to original locations on the Web server 200 or other
locations. During the desktop application initialization and
the desktop application exit, the file controller 250 could
replicate all the modified or updated files on the hosting server
300 to a certain temporary location on the Web server 200
repeatedly. This is for the purpose of backup to prevent these
files from being lost after the hosting server 300 crashes for
some reasons. Of course, as an alternative, the file controller
250 may also directly replicate all the modified or updated
files to original locations on the Web server 200 to overwrite
those original files, so that the modification or updating made
can be reflected immediately. It can be set by the user based on
his requirements.

Inthe image and software repository 500, two kinds of data
are stored, that is, desktop application/OS installation soft-
ware and server images. Installation software is used for first
time installation of a corresponding desktop application or
operation system on a hosting server (it may be either physi-
cal or virtual). Server images are snapshot/backup of existing
servers. Installation software may have the following
attributes: software name, version, vendor and installation
script. Server images may have the following attributes: soft-
ware list, image creation date, user ID and hardware type.

On each hosting server (e.g., hosting server 300 shown in
FIG. 2), in addition to the desktop application 340, two com-
ponents are also installed, i.e., the terminal service 310 and
the control agent 330.

The terminal service 310 communicates with the terminal
agent 110 to obtain user input at the client side and reproduce
it on the hosting server 300 side. It also captures the Ul on the
hosting server and sends it to the terminal agent 110 at the
client side. In this way, the user could call and control the
remote desktop application through the Web browser. Similar
to the terminal agent 110, the terminal service 310 could also
be implemented by several existing technologies such as
VNC and Java applet, etc.

The control agent 330 mainly has file synchronization and
application controlling functions. The control agent 330
interacts with the file controller 250 on the Web server 200 to
synchronize files. The control agent 330 could also monitor
the user’s local directory on the hosting server and track file
change events. When a certain file is modified or updated, it
may notify the file controller 250 to replicate the modified or
updated file. In the desktop application initialization stage,
the control agent 330 needs to start the target application and
load input files. In the desktop application exit stage, the

US 9,047,130 B2

11

control agent 330 needs to stop and exit the desktop applica-
tion in use. Herein, the control agent could also be imple-
mented by means of script or program.

Detailed description will be given in conjunction with the
flowcharts as shown in FIG. 5 to FIG. 7 to illustrate the
functions of the above components and the processing flow of
an exemplary method for converging a desktop application
and a Web application in accordance with the present inven-
tion. FIG. 5 shows a flowchart of a process 500 executed
during the desktop application initialization in accordance
with an embodiment of the present invention; FIG. 6 shows a
flowchart of a process 600 executed during exiting the desk-
top application in accordance with an embodiment of the
present invention; and FIG. 7 shows in detail a specific pro-
cess 700 in a resource allocation and provisioning step S520
in the process 500 as shown in FIG. 5 in accordance with an
embodiment of the present invention.

As described above, after the Web application 210 gener-
ates the desktop application initialization request, the desktop
application initialization process 500 will be started, as
shown in FI1G. 5. At step S510, the request handler 240 checks
the session manager 260 to determine whether there is an
existing hosting server for this session or not. If a negative
result is obtained at step S520, that is, if such a hosting server
can’t be found, the process proceeds to step S520 where
resource is allocated and provisioned by means of the
resource manager 270 and deployment controller 280 (its
further description will be given hereinafter with reference to
FIG. 7), and then the process 500 proceeds to step S530. Or
otherwise, if it is determined that such a hosting server exists
at step S520, the process 500 directly proceeds to step S530.
At step S530, the file controller 250 replicates the current
session file (e.g., Web files 220 shown in FIG. 2) to the hosting
server (e.g., hosting server 300 shown in FIG. 3). At step
S540, the control agent 330 starts the required desktop appli-
cation 340 and terminal service 310 on the hosting server 300.
At step S550, the hosting server’s IP address and port number
are returned to the client side (if the user accesses the remote
desktop application via his browser for the first time, the
client browser plug-in, i.e., terminal agent 110 is returned to
the client at the same time) and then the desktop application
initialization process 500 ends. After that, the user can startup
the terminal agent 110 at the client side and begin to interact
with the desktop application on the hosting server 300.

After the user has finished the desktop application interac-
tion, he/she may send a request to the Web application 210,
then the Web application 210 sends a desktop application exit
request and thus the desktop application exit process 600 as
shown in FIG. 6 will be started.

As shown in FIG. 6, at step S610, the request handler 240
checks the session manager 260 to determine whether there is
a hosting server running in this session. Since the hosting
server 300 is really allocated and run during the desktop
application interaction as described above, the determination
result at step S610 is positive and thus the desktop application
exit process 600 proceeds to step S620; or otherwise, the
process 600 ends. At step S620, the control agent 330 stops
the desktop application 340 and terminal service 310 on the
hosting server 300. Then, at step S630, by means of commu-
nication between the file controller 250 and the control agent
330, all the files modified or updated during the desktop
application interaction are replicated to the original locations
on the Web server 210 to overwrite original files. Next, at step
S640, it is determined whether the user wants to save the
image of the current hosting server for future use. For
example, it can be realized in the following manner. The Web
application can take “backup application” as an option and

5

10

15

20

25

30

35

40

45

50

55

60

65

12

after the user selects this option, a parameter will be carried in
the desktop application exit request sent by the Web applica-
tion to the desktop application service to ask for backup of the
current application. For example, the <backup> field in the
<exitreq> message given above can be referred to. The
request handler checks this parameter. If it is determined that
the user wants to save the image of the current hosting server
at step S640, the process 600 proceeds to step S650, where the
deployment controller 280 stores the image of the entire
hosting server to the image and software repository 500, and
then the process proceeds to step S660. Or otherwise, the
desktop application exit process 600 will directly jump to step
S660, where this hosting server is cleared by the deployment
controller 280 and then released by the resource manager 270
to the resource pool 400, then the desktop application exit
process 600 shown in FIG. 6 ends.

Detailed description of the processing of step S520 shown
in FIG. 5 (i.e., resource allocation and provisioning process
700) in accordance with an embodiment of the present inven-
tion is further given in conjunction with the flowchart in FI1G.
7 below.

As shown in FIG. 7, at step S710, it is decided whether or
not the user wants to restore server image and there is an
existing server image for the image ID specified in the desk-
top application initialization request in the image and soft-
ware repository 500. Herein, reference could be made to the
<restore> field in the exemplary <initializereq> message
given above as for the image ID. For example, before the user
requests to startup the desktop application, he/she could
query the server images and their image [Ds already stored in
the image and software repository by means of the Web
application and when the user requests to startup the desktop
application, he/she could input an image ID. If the decision
result is negative at step S710, the process 700 proceeds to
step S720 to determine whether there is a free hosting server
with matched OS and desktop application or not. If the deci-
sion result is positive at step S720, the process 700 jumps
directly to step S780. If the decision result is negative at step
S720, then at step S730, it is determined whether there is a
free hosting server that can be installed with the requested
desktop application. If it is determined that such a hosting
server is not present at step S730, then at step S740, an error
will be returned to the client and thus the desktop application
interaction is exited. Or otherwise, if it is determined that such
a hosting server is present at step S730, then at step S750, an
operation system is installed on the hosting server if required
(of course, if there is the operation system installed on this
hosting server, this step can be skipped). Next, at step S760,
the required desktop application is installed on the hosting
server. Subsequently, the process proceeds to step S770 to
install the terminal agent and control agent on the hosting
server, wherein the terminal agent and control agent can be
stored in, for example, the image and software repository 500
(of course, if the terminal agent and control agent have
already been installed on this hosting server, this step can be
skipped). After that, at step S780, the status of hosting server
is set as “in use”, then at step S790, the hosting server’s IP
address is returned to the request handler 240, thereby the
resource allocation and provisioning process 700 as shown in
FIG. 7 is finished. Then, step S530 shown in FIG. 5 will be
proceeded to.

FIG. 8 is an example of applying the method and system in
accordance with an embodiment of the present invention. In
this figure, a plurality of screen snapshot images of the client
computer from the time when the user selects a certain desk-

US 9,047,130 B2

13

top application on the Web browser to the time when the user
accesses the remote desktop application at the client side are
shown in sequence.

From the above description of the computer system and
method in accordance with exemplary embodiments of the
present invention, it can be easily seen that, according to the
present invention, the end user could call the remote desktop
application via his/her Web browser at the client side, just as
if this desktop application is a part of the Web application.
Files can be synchronized between the Web server and the
hosting server and all the files and data can be stored on the
Web server, therefore, these files and data can be shared by
many users and it is easier to manage and backup data on the
Web server. In addition, according to the present invention,
traditional desktop applications and the Web application can
be converged or integrated together, therefore, more plentiful
desktop applications can be provided for the Web application
of the end user, thereby making the user’s Web experience
more plentiful and interesting.

Of course, there might have other advantages besides those
described above, which will not be enumerated one by one.

Although description is given in conjunction with the flow-
charts shown in FIG. 5 to FIG. 7 as for the functions of the
system and its components shown in FIG. 2 and the process-
ing flow of the corresponding method in accordance with
exemplary embodiments of the present invention, those
skilled in the art would appreciate that the above system block
diagram and processing flowcharts are only exemplary and
various changes may be made thereto depending on design
requirements and practical requirements without departing
from the essence and scope of the present invention. For
example, the server images and desktop application installa-
tion software are stored in one image and software repository
as shown in FIG. 2, but they can be stored in different reposi-
tories, respectively. At step S630 shown in FIG. 6, as an
alternative, those files modified or updated during the desktop
application interaction can be replicated to a temporary loca-
tion on the Web server 210 rather than original locations, so as
to prevent these file being lost after the hosting server crashes
for some unexpected faults. Furthermore, the processes
described in conjunction with the flowcharts shown in FIGS.
6 and 7 are based on the premise that the option of “saving
server image” has been selected by the user. However, the
present invention can also be applied to a situation that the
option of “saving server image” is not selected. At this time,
the repository 500 shown in FIG. 2 does not need to save the
server image and some determination steps in the shown
process flowcharts could also be skipped. Moreover, at step
S715 shown in FIG. 7, although it is not definitely indicated,
it should be understood by those skilled in the art that the
allocated hosting server can be either a real and independent
physical server or a virtual server that can be shared by many
users. Of course, there might have other alternatives, which
will not be enumerated one by one herein.

Although no complete flowchart of the method according
to the exemplary embodiments of the present invention is
given in the accompanying drawings, it is obvious that those
skilled in the art could draw the corresponding flowchart
without any efforts based on the literal description of the
present invention and the flowcharts in FIG. 5 to FIG. 7.

Furthermore, it is obvious that the operation procedures of
the method according to the present invention described
above can also be implemented in the form of a computer
executable program stored in various machine readable stor-
age media.

Moreover, the objects of the present invention can also be
implemented by providing a storage medium with codes of

35

40

45

50

65

14

the above executable program stored thereon directly or indi-
rectly to a system or device, and then reading out and execut-
ing the program codes by a computer or center processing unit
(CPU) of the system or device.
At this time, as long as the system or device has a function
of executing a program, implementing modes of the present
invention are not limited to the program, and the program can
be in any form of for example, an object program, program
executed by an interpreter, or script program provided to an
operating system, etc.
The machine readable storage media mentioned above
may include but not be limited to various memories and
storage units, semiconductor devices, magnetic disk units
such as optical, magnetic and magneto-optic disks, and other
media suitable for storing information, etc.
In addition, the present invention may be achieved by a
client computer by connecting to corresponding websites on
the Internet, downloading the computer program codes
according to the present invention and installing the same into
the computer and then executing the program codes.
Finally, it is also noted that, in this document, relational
terms such as left and right, first and second, and the like are
used merely to distinguish one entity or action from another
entity or action without necessarily requiring or implying any
actual such relationship or order between such entities or
actions. Moreover, the terms “comprise”, “comprising,”
“include” or any other variations thereof, are intended to
cover a non-exclusive inclusion so that a process, method,
article, or device that comprises a list of elements does not
only include these elements but also may include other ele-
ments not explicitly listed or inherent to such process,
method, article, or device. An element preceded by “a” or
“an” does not, without more constraints, preclude the exist-
ence of additional identical elements in the process, method,
article, or device that comprises the element.
Although the embodiments of the present invention have
been described in detail with reference to the accompanying
drawings, it should be noted that, these embodiments are only
used to illustrate the present invention but not to limit the
present invention. Various modifications and changes can be
made by those skilled in the art without departing from the
scope of the present invention. Therefore, the scope of the
present invention is only defined by the appended claims and
the equivalents thereof.
The invention claimed is:
1. A method for converging a desktop application and a
Web application, the Web application being included in a Web
server, the method comprising steps of:
in response to a request from a client user for using a target
desktop application, starting a desktop application ini-
tialization process on the Web server and determining an
appropriate corresponding hosting server for the user;

preparing and provisioning desktop application environ-
ment on the corresponding hosting server and starting
the target desktop application, wherein the preparing
and provisioning includes installing the target desktop
application on the corresponding hosting server if the
target desktop application has not been previously
installed;

transmitting the corresponding hosting server’s address to

the client so as to make desktop application interaction
between the client and the corresponding hosting server;
in response to the completion of the desktop application
interaction, stopping and exiting the target desktop
application on the corresponding hosting server; and
wherein when the user requests to use the desktop appli-
cation for the first time, a browser plug-in is simulta-

US 9,047,130 B2

15

neously transmitted to the client in the transmitting step,
so as to intercept user input at the client side and display
the corresponding hosting server’s user interface in a
Web browser at the client side.

2. The method according to claim 1, wherein all files on the
corresponding hosting server and the Web server are synchro-
nized during the desktop application interaction.

3. The method according to claim 1, further comprising a
step of storing server image of the corresponding hosting
server and releasing the corresponding hosting server after
exiting the target desktop application.

4. The method according to claim 1, wherein determining
an appropriate corresponding hosting server for the user com-
prises:

if there is a hosting server for the current session in a

resource pool at present, then determining it as the cor-
responding hosting server;

or otherwise, according to the target desktop application

and its required operating system information, finding
from the resource pool a matched hosting server as the
corresponding hosting server.

5. The method according to claim 4, wherein preparing and
provisioning desktop application environment on the corre-
sponding hosting server comprises:

if said target desktop application has not been installed on

the corresponding hosting server, installing an operating
system required by the target desktop application on the
corresponding hosting server as necessary; and

storing, in a repository accessible by the Web server, instal-

lation software for a plurality of desktop applications
including the target desktop application and their
required operating systems.
6. A computer program product loadable into the internal
memory of a digital computer, comprising software code
portions for performing, when said product is run on a com-
puter, to carry out the steps of a method as claimed in claim 1.
7. A method for converging a desktop application and a
Web application, the Web application being included in a Web
server, the method comprising steps of:
in response to a request from a client user for using a target
desktop application, starting a desktop application ini-
tialization process on the Web server and determining an
appropriate corresponding hosting server for the user;

preparing and provisioning desktop application environ-
ment on the corresponding hosting server and starting
the target desktop application, wherein the preparing
and provisioning includes installing the target desktop
application on the corresponding hosting server if the
target desktop application has not been previously
installed;
transmitting the corresponding hosting server’s address to
the client so as to establish a desktop application inter-
action within the Web application between the clientand
the corresponding hosting server, wherein the client
modifies content of the Web application during the desk-
top application interaction;
in response to the completion of the desktop application
interaction, stopping and exiting the target desktop
application on the corresponding hosting server; and

wherein when the user requests to use the desktop appli-
cation for the first time, a browser plug-in is simulta-
neously transmitted to the client in the transmitting step,
so as to intercept user input at the client side and display
the corresponding hosting server’s user interface in a
Web browser at the client side.

8. The method according to claim 7, wherein all files on the
corresponding hosting server and the Web server are synchro-

10

15

20

25

30

40

45

50

60

16

nized during the desktop application interaction, and Web
files modified during the desktop application interaction are
replicated to the Web server.

9. The method according to claim 7, further comprising a
step of storing server image of the corresponding hosting
server and releasing the corresponding hosting server after
exiting the target desktop application.

10. The method according to claim 7, wherein determining
anappropriate corresponding hosting server for the user com-
prises:

if there is a hosting server for the current session in a

resource pool at present, then determining it as the cor-
responding hosting server;

or otherwise, according to the target desktop application

and its required operating system information, finding
from the resource pool a matched hosting server as the
corresponding hosting server.

11. The method according to claim 7, wherein preparing
and provisioning desktop application environment on the cor-
responding hosting server comprises:

if said target desktop application has not been installed on

the corresponding hosting server, installing an operating
system required by the target desktop application on the
corresponding hosting server as necessary; and

storing, in a repository accessible by the Web server, instal-

lation software for a plurality of desktop applications
including the target desktop application and their
required operating systems.

12. A computer readable storage medium comprising a
computer readable program, wherein the computer readable
program when executed on a computer causes the computer
to perform the steps of a method as claimed in claim 7.

13. A method for converging a desktop application and a
Web application, the Web application being included in a Web
server, the method comprising steps of:

in response to a request from a client user for using a target

desktop application, starting a desktop application ini-

tialization process on the Web server and determining an

appropriate corresponding hosting server for the user;

preparing and provisioning a desktop application environ-
ment on the corresponding hosting server and starting
the target desktop application, wherein preparing and
provisioning the desktop application environment on the
corresponding hosting server comprises:
if said target desktop application has not been installed
on the corresponding hosting server, installing an
operating system required by the target desktop appli-
cation on the corresponding hosting server as neces-
sary; and
installing the target desktop application on the corre-
sponding hosting server, wherein installation soft-
ware for a plurality of desktop applications including
the target desktop application and their required oper-
ating systems is stored in a repository accessible by
the Web server;
transmitting the corresponding hosting server’s address to
the client so as to make desktop application interaction
between the client and the corresponding hosting server;

in response to the completion of the desktop application
interaction, stopping and exiting the target desktop
application on the corresponding hosting server; and

wherein when the user requests to use the desktop appli-
cation for the first time, a browser plug-in is simulta-
neously transmitted to the client in the transmitting step,
so as to intercept user input at the client side and display
the corresponding hosting server’s user interface in a
Web browser at the client side.

#* #* #* #* #*

